1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
//! implementation of geno (morphyologt) mutation
use std::f32::consts::PI;
use rand::prelude::*;
use crate::{
blob::geno_blob_builder::{BlobGeno, GenericGenoNode, GenoNode},
consts::{*, mutate_consts::*},
};
const CLAMP: [f32;2] = MUTATE_SINGLE_BLOCK_SIZE_CLAMP_SCALER;
/// loop over all blobs to mutate geno.
/// mutate tree-structure, block-size, joint-limit in the order
///
/// After the mutation, the genos and the NN is unmatched,
/// will be rematched in function `sync_mutate`
pub fn mutate_geno(
geno_q: &mut Vec<BlobGeno>
) {
for mut geno in geno_q {
mutate_tree_structure(&mut geno);
mutate_block_size(&mut geno);
mutate_joint_limit(&mut geno)
}
}
/// gain or lose limbs for a blob
///
/// gain limb might cause self confilt.
/// set `MUTATE_GAIN_LIMB_MAX_TRY` to try if gain limb process is unsuccessful.
pub fn mutate_tree_structure(geno: &mut BlobGeno) {
let mut rng: ThreadRng = thread_rng();
if !rng.gen_bool(MUTATE_TREE_STRUCTURE_PROB as f64) {
return;
}
if rng.gen_bool(MUTATE_GAIN_LIMB_PROB as f64) {
// gain limb
let mut candidates = geno.vec_tree.branch_nodes();
if candidates.is_empty() {
// the root is leaf, add it to candidates
candidates.push(0);
}
for _ in 0..MUTATE_GAIN_LIMB_MAX_TRY {
if let Some(idx) = candidates.iter().choose(&mut rand::thread_rng()) {
// loop till get validate limb
if gain_limb(geno, *idx) {
break;
}
}
}
} else {
// TODO: it is better not lose parent indicator, which might cause self-confilt if a node
// without parent indicator gain four limbs
//
// lose limb
let candidates = geno.leaf_nodes();
if candidates.len() <= 1 {
// the only leaf is root, which cannot lose limb
// or the root only have one limb left
return;
}
if let Some(idx) = candidates.iter().choose(&mut rand::thread_rng()) {
lose_limb(geno, *idx);
}
}
}
/// gain a new limb as the child of the index node
/// return type means success or fail
fn gain_limb(geno: &mut BlobGeno, idx: usize) -> bool {
// direction and index of node
// slots are nodes has `none` as value
let slots: Vec<(usize, usize)> = geno
.vec_tree
.children(idx)
.iter()
.enumerate()
.filter(|&(_, &child_idx)| geno.vec_tree.nodes[child_idx].is_none())
.map(|(index, &child_idx)| (index, child_idx))
.collect();
if slots.is_empty() {
return false;
}
let choosen = *slots.iter().choose(&mut rand::thread_rng()).unwrap();
if let Some(Some(GenericGenoNode::Child(parent))) = geno.vec_tree.nodes.get(idx) {
// TODO: new nodes should also have parent indicator
geno.vec_tree.nodes[choosen.1] = Some(new_rand_node(parent, choosen.0));
if geno.is_valid() {
return true;
} else {
geno.vec_tree.nodes[choosen.1] = None;
return false;
}
} else {
false
}
}
/// generate a new random `GenericGenoNode`,
///
/// used to generate new limbs to blob
///
/// Need to know the direction of the node to generate to prevent self confilt
/// and to calculate the presice position of the new block.
fn new_rand_node(parent: &GenoNode, direction: usize) -> GenericGenoNode {
let mut rng = thread_rng();
let parent_size = parent.size;
let parent_center = parent.center;
let joint_limits = [rng.gen_range(-PI * 0.9..0.0), rng.gen_range(0.0..PI * 0.9)];
// // set limitation
// // limitation can only avoid block conflict
// // it can not avoid conflict caused by tree structure
// let dx_dy_limits_top_bottom = [parent_size[0], DEFAULT_BLOCK_SIZE[0] * RAND_SIZE_SCALER[1]];
// let dx_dy_limits_left_right = [DEFAULT_BLOCK_SIZE[0] * RAND_SIZE_SCALER[1], parent_size[1]];
// let mut size = [
// rng.gen_range(RAND_SIZE_SCALER[0] * DEFAULT_BLOCK_SIZE[0]..dx_dy_limits_top_bottom[0]),
// rng.gen_range(RAND_SIZE_SCALER[0] * DEFAULT_BLOCK_SIZE[1]..dx_dy_limits_top_bottom[1]),
// ];
// if direction == 2 || direction == 3 {
// size = [
// rng.gen_range(RAND_SIZE_SCALER[0] * DEFAULT_BLOCK_SIZE[0]..dx_dy_limits_left_right[0]),
// rng.gen_range(RAND_SIZE_SCALER[0] * DEFAULT_BLOCK_SIZE[1]..dx_dy_limits_left_right[1]),
// ];
// }
// no limitation implementation
let size = [
rng.gen_range(RAND_SIZE_SCALER[0] * DEFAULT_BLOCK_SIZE[0]..RAND_SIZE_SCALER[1] * DEFAULT_BLOCK_SIZE[0]),
rng.gen_range(RAND_SIZE_SCALER[0] * DEFAULT_BLOCK_SIZE[1]..RAND_SIZE_SCALER[1] * DEFAULT_BLOCK_SIZE[1]),
];
// center
let mut center = [
parent_center[0],
parent_center[1] + parent_size[1] + size[1],
];
if direction == 1 {
center = [
parent_center[0],
parent_center[1] - parent_size[1] - size[1],
];
} else if direction == 2 {
center = [
parent_center[0] - parent_size[0] - size[0],
parent_center[1],
];
} else if direction == 3 {
center = [
parent_center[0] + parent_size[0] + size[0],
parent_center[1],
]
}
return GenericGenoNode::Child(GenoNode {
joint_limits,
size,
center,
nn_id: None,
});
}
/// the blob lose a block at index `idx`, and all its subnodes.
/// (but in the implementation, dropped candidates can only be leaf nodes)
///
/// drop the indexed node
/// after a node is dropped,
/// the bounded nn will also be removed in function `sync_mutate`
fn lose_limb(geno: &mut BlobGeno, idx: usize) {
geno.vec_tree.clean_subtree(idx);
// geno.vec_tree.nodes[idx] = None;
}
/// mutate size of blocks for a blob
///
/// all blocks of the blob can be mutate (but not must be mutate)
///
/// the mutation must valid, which means this function won't cause self confilt
pub fn mutate_block_size(geno: &mut BlobGeno) {
let mut rng = thread_rng();
if !rng.gen_bool(MUTATE_BLOCK_SIZE_PROB as f64) {
return;
}
let mut potential_mutations: Vec<(usize, [f32; 2])> = Vec::new();
for (index, i) in geno.vec_tree.nodes.iter().enumerate() {
if let Some(GenericGenoNode::Child(node)) = i {
if !rng.gen_bool(MUTATE_SINGLE_BLOCK_SIZE_PROB as f64) {
continue;
}
let mutation_factor_0 = rng.gen_range(0.9..=1.1);
let mutation_factor_1 = rng.gen_range(0.9..=1.1);
let new_size_0 = (node.size[0] * mutation_factor_0).clamp(DEFAULT_BLOCK_SIZE[0]*CLAMP[0], DEFAULT_BLOCK_SIZE[0]*CLAMP[1]);
let new_size_1 = (node.size[1] * mutation_factor_1).clamp(DEFAULT_BLOCK_SIZE[1]*CLAMP[0], DEFAULT_BLOCK_SIZE[1]*CLAMP[1]);
// Store the mutation
potential_mutations.push((index, [new_size_0, new_size_1]));
}
}
for (index, new_size) in &potential_mutations {
mutate_single_block_size(geno, *index, *new_size);
}
}
/// mutate the size of a single block to the new size provided
///
/// Notice: if a block has its size changed, all its subnode will have their position changed,
/// which can casue self-confilt to happen.
///
/// if the mutation (new size) is not valid (cause self confilt),
/// then will not apply
fn mutate_single_block_size(
geno: &mut BlobGeno,
index: usize,
new_size: [f32;2]
) {
let temp_geno = geno.clone();
if let Some(Some(GenericGenoNode::Child(node))) = temp_geno.vec_tree.nodes.get(index) {
// TODO: modify the center of self and all children nodes if size changed
geno.change_node_size(index, new_size);
if let Some(move_vec) = get_movevec(index, node.size, new_size) {
// if muated block is not root
// println!("{:?}", move_vec);
geno.move_subtree_nodes(index, move_vec);
} else {
// if mutate block is root
geno.move_subtree_nodes_root(node.size, new_size)
}
} else {
// mutate block index must be valid
panic!()
}
// validation check
if !geno.is_valid() {
*geno = temp_geno;
}
}
/// if a block has its size changed, all its subnode will have their position changed
///
/// Base on the changes of a node, return how much and which direction all its subnodes will move.
///
/// outputs front, left, right movement vector for input node (facing outward to the root node)
fn get_movevec(
index: usize,
old_size: [f32;2],
new_size: [f32;2]
) -> Option<([f32;2],[f32;2],[f32;2])> {
if index == 0 {
return None
} else {
let top = [0.0, new_size[1]-old_size[1]];
let bottom = [0.0, old_size[1]-new_size[1]];
let left = [old_size[0]-new_size[0], 0.0];
let right = [new_size[0]-old_size[0], 0.0];
match (index - 1) % 4 {
0 => Some((
top,
left,
right
)),
1 => Some((
bottom,
right,
left
)),
2 => Some((
left,bottom,top
)),
3 => Some((
right,top,bottom
)),
_ => {panic!()}
}
}
}
/// Mutate joint limit of limbs
pub fn mutate_joint_limit(geno: &mut BlobGeno){
let mut rng: ThreadRng = thread_rng();
for i in geno.vec_tree.nodes.iter_mut(){
if !rng.gen_bool(MUTATE_JOINT_LIMIT_PROB as f64) {
continue;
}
if let Some(GenericGenoNode::Child(node)) = i {
let mutation_factor_0 = rng.gen_range(0.9..=1.1);
let mutation_factor_1 = rng.gen_range(0.9..=1.1);
let new_limit_0 = (node.joint_limits[0] * mutation_factor_0).clamp(MUTATE_JOINT_LIMIT_MIN, 0.0);
let new_limit_1 = (node.joint_limits[1] * mutation_factor_1).clamp(0.0, MUTATE_JOINT_LIMIT_MAX);
node.joint_limits = [new_limit_0,new_limit_1];
}
}
}