1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
//! all implementation of framely updates relate to blobs (sensors and activators behavior)
use std::f32::consts::PI;
use std::time::Instant;
use bevy::prelude::*;
use bevy_rapier2d::{
prelude::{Collider, ContactForceEvent, ImpulseJoint, Velocity},
rapier::prelude::JointAxis,
};
use crate::{
blob::{
blob::BlobInfo,
block::{BlockDepth, CenterBlockFlag, JointInfo, NeuronId, ParentAnchor},
geno_blob_builder::BlobGeno,
},
brain::{
resource::BevyBlockNeurons,
signal::{BrainSignal, InwardNNInputSignal, SignalHandler},
},
componet::{BlobEntityIndex, ColliderFlag},
consts::*,
};
use super::resource::{Frames, TED};
/// **CORE FUNCTION**
///
/// Update all blobs' motor condition to let blobs preform action.
///
/// select `Query<(&Parent, &mut ImpulseJoint)`
/// means the center block will not be selected
///
/// Can not use `EventReader` multiple times each frame.
/// Events been read will be marked as read.
pub fn block_action(
mut brain_q: Query<(&Parent, Entity), With<CenterBlockFlag>>,
mut block_q: Query<(Entity, &Parent, &mut ImpulseJoint)>,
nn_id_q: Query<&NeuronId>,
mut bbn: ResMut<BevyBlockNeurons>,
mut cf_events: EventReader<ContactForceEvent>,
collider_q: Query<&ColliderFlag>,
joint_info_q: Query<&JointInfo>,
depth_q: Query<&BlockDepth>,
blob_q: Query<&BlobInfo>,
p_anchor_q: Query<&ParentAnchor>,
// mut joint_q: Query<&mut ImpulseJoint>
) {
let start_time = Instant::now();
if block_q.is_empty() {
assert!(brain_q.is_empty());
return;
}
if brain_q.is_empty() {
assert!(block_q.is_empty());
return;
}
let mut signal_handler = SignalHandler::default();
let mut cf_events_vec = Vec::from_iter(cf_events.into_iter().cloned());
// push inward
for (child, parent, joint) in block_q.iter_mut() {
let entity_id = parent.get();
// get id
let NeuronId {
id: nn_id,
parent_id: parent_nn_id,
} = nn_id_q.get(entity_id).unwrap_or(&NeuronId {
id: 0,
parent_id: None,
});
// init signal
let cf_singal = get_cf_signal(entity_id, &mut cf_events_vec, &collider_q);
let joint_motor = joint.data.motor(JointAxis::AngX).unwrap();
let joint_info = joint_info_q.get(entity_id).unwrap();
let joint_signal = (
joint_motor.target_pos,
joint_motor.target_vel,
joint_info.ang_pos,
joint_info.ang_velocity,
);
let inward_signal = InwardNNInputSignal::default()
.with_cf_signal(cf_singal)
.with_joint_singal(joint_signal);
// push inward signals to signal handler
// unwarp parent_id, since all inward signal should have parent
// unwarp depth, since all inward signal should have depth
// unwrap p_anchor, since all inward signal should have parent_anchor
signal_handler.push_inward(
inward_signal,
*nn_id,
parent_nn_id.unwrap(),
depth_q.get(entity_id).unwrap(),
p_anchor_q.get(entity_id).unwrap(),
child,
);
}
// push brains
for (parent, entity_id) in brain_q.iter_mut() {
// get id
// should have id so unwrap
let nn_id = nn_id_q.get(entity_id).unwrap().id;
// cf_signal
let cf_signal = get_cf_signal(entity_id, &mut cf_events_vec, &collider_q);
// blob_signal
// should in blobinfo so unwrap
let blobinfo = blob_q.get(parent.get()).unwrap();
signal_handler.push_brain(
BrainSignal::default()
.with_cf_signal(cf_signal)
.with_blob_info(blobinfo.mass_center, blobinfo.velocity),
nn_id,
);
}
// run neuron
let output: Vec<(Entity, f32, f32)> = bbn.get_outputs(signal_handler);
// println!("{}",output[1].1);
// update joints base on nn's output
for (entity_id, target_pos, target_vel) in output {
// println!("{},{}",target_pos,target_vel);
let (_, _, mut joint) = block_q.get_mut(entity_id).unwrap();
joint
.data
.set_motor_position(JointAxis::AngX, target_pos, MOTOR_STIFFNESS, MOTOR_DAMPING);
joint
.data
.set_motor_velocity(JointAxis::AngX, target_vel, MOTOR_DAMPING);
}
// let output = bbn.get_rand_outputs(signal_handler);
// // TODO: make sure the element order in output vec matches the iterator so that they can be zipped together
// // update physical world
// for (signal, (_, mut joint)) in output.iter().zip(block_q.iter_mut()) {
// joint
// .data
// .set_motor_position(JointAxis::AngX, signal[0], MOTOR_STIFFNESS, MOTOR_DAMPING);
// joint
// .data
// .set_motor_velocity(JointAxis::AngX, signal[1], MOTOR_DAMPING);
// }
let duration = Instant::now() - start_time;
if PRINT_FUNCTION_TIME && duration >= MIN_PRINT_DURATION {
println!("block_action: {:?}", duration);
}
}
// TODO: test preformance and change to `get_bulk_cf_events()` if necessary
// loop over all entities over all events might be slow
// TODO: Takes input of mut ref, returns a clone, considering return the reference
// need to dealing with lifetime
//
/// get contact force event for an entity,
/// return the first if multiple event shappen at the same time
fn get_cf_event(
entity_id: Entity,
cf_events: &mut Vec<ContactForceEvent>,
) -> Option<ContactForceEvent> {
cf_events
.iter()
.find(|&event| event.collider1 == entity_id || event.collider2 == entity_id)
.and_then(|event| Some(event.clone()))
}
/// Not a bevy system.
///
/// Output singal depends on NN's input
///
/// collect contact force events and translate it into nn signals
///
/// contact blob and contact wall have different signal
fn get_cf_signal(
entity_id: Entity,
cf_events_vec: &mut Vec<ContactForceEvent>,
blob_flag_q: &Query<&ColliderFlag>,
) -> Option<(bool, bool, [f32; 2], f32)> {
// if contact
if let Some(event) = get_cf_event(entity_id, cf_events_vec) {
let other = if entity_id == event.collider1 {
event.collider2
} else {
event.collider1
};
if let (Ok(ColliderFlag::BLOCK(BlobEntityIndex(Some(sid)))), Ok(oflag)) =
(blob_flag_q.get(entity_id), blob_flag_q.get(other))
{
let (mut wall, mut blob, vect, mag) =
(false, false, event.total_force, event.total_force_magnitude);
if let ColliderFlag::WALL = oflag {
wall = true;
}
if let ColliderFlag::BLOCK(BlobEntityIndex(Some(oid))) = oflag {
if sid != oid {
blob = true;
}
}
return Some((wall, blob, [vect.x, vect.y], mag));
}
}
None
}
/// Update `JointInfo` componet each frame.
///
/// update:
/// - current angular velocity
/// - current angular position
pub fn update_joint_info(
parent_joint_q: Query<(&Parent, &ImpulseJoint)>,
mut joint_info_q: Query<&mut JointInfo>,
trans_q: Query<&Transform>,
veloc_q: Query<&Velocity>,
) {
let start_time = Instant::now();
for (parent, joint) in parent_joint_q.iter() {
let parent_id = parent.get();
let child_id = joint.parent;
// get info
let joint_info = joint_info_q.get_mut(parent_id);
let parent_trans = trans_q.get(parent_id);
let child_trans = trans_q.get(child_id);
let parent_v = veloc_q.get(parent_id);
let chlid_v = veloc_q.get(child_id);
// update info
if let (Ok(mut ji), Ok(pt), Ok(ct), Ok(pv), Ok(cv)) =
(joint_info, parent_trans, child_trans, parent_v, chlid_v)
{
ji.update(
get_relative_rotation(pt, ct),
get_relative_angular_velocity(pv, cv),
);
} else {
panic!("update joint info failed!")
}
}
let duration = Instant::now() - start_time;
if PRINT_FUNCTION_TIME && duration >= MIN_PRINT_DURATION {
println!("update_joint_info: {:?}", duration);
}
}
/// Calculates the relative rotation between two transforms.
///
/// This function takes two references to `Transform` objects and computes the relative rotation
/// between them in degrees. The rotation is calculated using the arctangent of the z and w components
/// of the rotation quaternion.
///
/// # Parameters
///
/// * `transform1`: A reference to the first transform.
/// * `transform2`: A reference to the second transform.
///
/// # Returns
///
/// Returns the relative rotation between the two transforms in degrees.
pub fn get_relative_rotation(transform1: &Transform, transform2: &Transform) -> f32 {
let r1 = transform1.rotation;
let r2 = transform2.rotation;
r1.z.atan2(r1.w) * 360.0 / PI - r2.z.atan2(r2.w) * 360.0 / PI
}
/// Calculates the relative angular velocity between two velocity objects.
///
/// This function takes two references to `Velocity` objects and computes the relative angular
/// velocity between them in degrees per second. The result is normalized by dividing by π and
/// multiplying by 180.
///
/// # Parameters
///
/// * `v1`: A reference to the first velocity object.
/// * `v2`: A reference to the second velocity object.
///
/// # Returns
///
/// Returns the relative angular velocity between the two velocity objects in degrees per second.
pub fn get_relative_angular_velocity(v1: &Velocity, v2: &Velocity) -> f32 {
(v1.angvel - v2.angvel) / PI * 180.0
}
/// **a bevy function**
///
/// Updates the `BlobInfo` for every blob component in the ECS.
///
/// This function iterates through all blob components and calculates the new mass center and velocity
/// based on the child entities' transforms and colliders. It also updates the move distance of the blob
/// based on the current frame and iteration length.
///
/// it updates:
/// - mass_center
/// - velocity
/// - cumulated move distance (for move training usage)
///
/// # Panics
///
/// This function will panic if any child of a blob does not have both a transform and collider,
/// or if a blob does not have at least one block.
pub fn update_blob_info(
tc_q: Query<(&Transform, &Collider)>,
mut blob_q: Query<(&mut BlobInfo, &Children)>,
frames: Res<Frames>,
) {
let start_time = Instant::now();
for (mut blob, children) in blob_q.iter_mut() {
let mut mass_vec = Vec::<[f32; 3]>::new();
for child in children {
// unwrap since every child of blob should have transform and collider
let (transform, collider) = tc_q.get(*child).unwrap();
mass_vec.push([
transform.translation.x,
transform.translation.y,
collider.scale().x * collider.scale().y,
])
}
// unwrap since all blob should have at least one block
let new_mass_center = get_mass_center(mass_vec).unwrap();
blob.velocity = [
new_mass_center[0] - blob.mass_center[0],
new_mass_center[1] - blob.mass_center[1],
];
// update move_distance
if frames.0 % ITERATION_LENGTH as u128 != 1 {
blob.move_distance[0] += blob.velocity[0];
blob.move_distance[1] += blob.velocity[1];
}
// update mass_center
blob.mass_center = new_mass_center;
}
let duration = Instant::now() - start_time;
if PRINT_FUNCTION_TIME && duration >= MIN_PRINT_DURATION {
println!("update_blob_info: {:?}", duration);
}
}
/// Calculates the mass center of a collection of points.
///
/// This function takes a vector of points, where each point is represented as an array of three `f32` values.
/// The first two values are the x and y coordinates, and the third value is the mass at that point.
/// The function calculates the weighted sum of the coordinates based on the mass and divides by the total mass
/// to find the mass center.
///
/// # Parameters
///
/// * `mass_points`: A vector of points, where each point is an array `[x, y, mass]`.
///
/// # Returns
///
/// Returns an `Option` containing an array `[x, y]` representing the mass center of the points.
/// If the input vector is empty or the total mass is zero, the function returns `None`.
fn get_mass_center(mass_points: Vec<[f32; 3]>) -> Option<[f32; 2]> {
if mass_points.is_empty() {
return None;
}
let mut total_mass = 0.0;
let mut weighted_sum = [0.0, 0.0];
for point in mass_points {
let mass = point[2];
weighted_sum[0] += point[0] * mass;
weighted_sum[1] += point[1] * mass;
total_mass += mass;
}
if total_mass == 0.0 {
None
} else {
Some([weighted_sum[0] / total_mass, weighted_sum[1] / total_mass])
}
}
/// update iteration resource
pub fn update_iteration_frames(mut frames: ResMut<Frames>) {
frames.0 += 1;
}
/// update TED resource
pub fn update_crowding_distance(
mut blob_q: Query<(&BlobGeno, &mut BlobInfo)>,
mut ted: ResMut<TED>,
) {
let mut genovec: Vec<&BlobGeno> = Vec::new();
let mut infovec: Vec<BlobInfo> = Vec::new();
for (geno, info) in blob_q.iter() {
genovec.push(geno);
infovec.push(info.clone());
}
// calculate crowding distance
for i in 0..genovec.len() {
let &this_geno = genovec.get(i).unwrap();
let this_info = infovec.get_mut(i).unwrap();
let mut sum_crowding_distance: usize = 0;
for j in 0..genovec.len() {
let &other_geno = genovec.get(j).unwrap();
sum_crowding_distance +=
this_geno.vec_tree.tree_edit_distance(&other_geno.vec_tree) as usize;
}
let avg_corwding_distance = sum_crowding_distance as f32 / genovec.len() as f32;
this_info.crowding_distance = avg_corwding_distance;
}
let mut cd: f32 = 0.0;
// update crowding distance
for (i, (_, mut info)) in blob_q.iter_mut().enumerate() {
*info = infovec.get(i).unwrap().clone();
cd += infovec.get(i).unwrap().crowding_distance;
}
ted.0 = cd / blob_q.iter().len() as f32;
}