1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
//! implementation about `BevyBlockNeurons`, which is a wrapper around neural network to make it into a bevy resource.

use std::f32::consts::PI;

use bevy::prelude::*;
use ndarray::prelude::*;
use rand::prelude::*;

use crate::{
    brain::signal::InwardNNInputSignalUnit,
    consts::{MOTOR_MAX_TARGET_V, OUTWARD_NN_PARENT_INPUT_LEN},
};

use super::{
    neuron::GenericNN,
    signal::{BrainSignalUnit, SignalHandler},
};

const DL: usize = OUTWARD_NN_PARENT_INPUT_LEN;

// TODO: add random generator and oscillator
/// Bevy resource, which make sure the neurons can be accessed
/// and modified from bevy side
#[derive(Resource, Debug)]
pub struct BevyBlockNeurons {
    pub nnvec: Vec<GenericNN>,
}

impl Default for BevyBlockNeurons {
    fn default() -> Self {
        let nnv = Vec::<GenericNN>::new();
        Self { nnvec: nnv }
    }
}

impl BevyBlockNeurons {
    // TODO: parallel, gpu
    /// start neuron computing and return outputs
    pub fn get_outputs(&mut self, mut signal_handler: SignalHandler) -> Vec<(Entity, f32, f32)> {
        // store output value for joint motors
        let mut outputs: Vec<(Entity, f32, f32)> = Vec::new();
        // store internal outward_nn's outputs, index is nn_id
        let mut outward_passes = vec![Array1::<f32>::zeros(DL); self.nnvec.len()];

        // generate grouped signal
        let (mut grouped_signal, mut brain_signal) = signal_handler.get_sig_mut();

        // println!("grouped signal {:#?}",grouped_signal);
        // println!("brain signal {:#?}",brain_signal);
        // passing through all inward layers
        for idx in (1..grouped_signal.len()).rev() {
            inward_bulk_pass(&mut grouped_signal, &mut self.nnvec, idx)
        }

        // passing to brain
        brain_pass(&mut brain_signal, &grouped_signal[0], &mut self.nnvec);
        // println!("{:#?}",brain_signal[0].signal);
        brain_forward(&brain_signal, &mut self.nnvec, &mut outward_passes);

        for idx in 0..grouped_signal.len() {
            outward_bulk_pass(
                &mut grouped_signal,
                &mut self.nnvec,
                idx,
                &mut outputs,
                &mut outward_passes,
            )
        }

        outputs
    }

    pub fn get_rand_outputs(&self, signal_handler: SignalHandler) -> Vec<[f32; 2]> {
        let mut rng = thread_rng();
        let len = signal_handler.inward_len();
        vec![
            [
                rng.gen_range(-PI..PI),
                rng.gen_range(-MOTOR_MAX_TARGET_V..MOTOR_MAX_TARGET_V),
            ];
            len
        ]
    }

    /// drop all the values inside
    pub fn clear(&mut self) {
        self.nnvec.clear();
    }
}

/// Pass the signal from the leaf to the root layer by layer
///
/// bulk_idx can not be 0
fn inward_bulk_pass(
    grouped_signal: &mut Vec<Vec<&mut InwardNNInputSignalUnit>>,
    nnvec: &mut Vec<GenericNN>,
    bulk_idx: usize,
) {
    if bulk_idx == 0 {
        panic!()
    }

    // aviod multiple borrow here
    let (left, right) = grouped_signal.split_at_mut(bulk_idx);
    let passed_layer: &mut Vec<&mut InwardNNInputSignalUnit> = &mut left[bulk_idx - 1];
    let current_layer: &mut Vec<&mut InwardNNInputSignalUnit> = &mut right[0];

    // TODO: parallel this for loop
    for unit in current_layer {
        if let GenericNN::BLOCKNN(nn) = &mut nnvec[unit.nn_id] {
            passed_layer
                .iter_mut()
                .find(|u| u.nn_id == unit.parent_nn_id)
                .unwrap()
                .get_signal_mut()
                .push_child_signal(nn.get_inward_output(&unit.signal), unit.anchor_pos);
        } else {
            panic!(
                "nn with id {} is expected to be BLOCKNN, but found BRAINNN",
                unit.nn_id
            )
        }
    }
}

/// pass the signal from last inward layer to brain
fn brain_pass(
    brain_signal: &mut Vec<&mut BrainSignalUnit>,
    current_layer: &Vec<&mut InwardNNInputSignalUnit>,
    nnvec: &mut Vec<GenericNN>,
) {
    for unit in current_layer {
        if let GenericNN::BLOCKNN(nn) = &mut nnvec[unit.nn_id] {
            brain_signal
                .iter_mut()
                .find(|u: &&mut &mut BrainSignalUnit| u.nn_id == unit.parent_nn_id)
                .unwrap()
                .get_signal_mut()
                .push_child_signal(nn.get_inward_output(&unit.signal), unit.anchor_pos);
        } else {
            panic!(
                "nn with id {} is expected to be BLOCKNN, but found BRAINNN",
                unit.nn_id
            )
        }
    }
}

/// run brain_nn and start outward pass
fn brain_forward(
    brain_signal: &Vec<&mut BrainSignalUnit>,
    nnvec: &mut Vec<GenericNN>,
    outward_passes: &mut Vec<Array1<f32>>,
) {
    for signal in brain_signal {
        if let Some(GenericNN::BRAINNN(brain)) = nnvec.get(signal.nn_id) {
            // println!("{:#?}",signal.signal);
            // store forward result
            outward_passes[signal.nn_id] = brain.forward(&signal.signal);
        } else {
            panic!()
        }
    }
}

fn outward_bulk_pass(
    grouped_signal: &mut Vec<Vec<&mut InwardNNInputSignalUnit>>,
    nnvec: &mut Vec<GenericNN>,
    bulk_idx: usize,
    outputs: &mut Vec<(Entity, f32, f32)>,
    outward_passes: &mut Vec<Array1<f32>>,
) {
    let current_layer = &grouped_signal[bulk_idx];

    // TODO: parallel this loop
    for unit in current_layer {
        if let GenericNN::BLOCKNN(nn) = &mut nnvec[unit.nn_id] {
            // get result from parent and write output back
            let a = nn.get_outward_output(&outward_passes[unit.parent_nn_id]);
            outward_passes[unit.nn_id] = a.slice(s![..DL]).map(|x| *x).clone();
            // push result
            outputs.push((unit.entity_id, a[DL], a[DL + 1]));
        } else {
            panic!()
        }
    }
}